
 

 

Microservices Architecture 

 

A White Paper by: 

Somasundram Balakrushnan, Salesforce.com (MSA Project Co-Chair) 

Ovace Mamnoon, Hewlett Packard Enterprise (MSA Project Co-Chair) 

John Bell, Ajontech LLC 

Benjamin Currier, Hewlett Packard Enterprise 

Ed Harrington, Conexiam 

Brian Helstrom, IBM 

Peter Maloney, Raytheon Company 

Marcelo Martins, IBM 

 

July 2016 



Microservices Architecture 

 

www.opengroup.org A Wh i t e  P ap e r  P u b l i s h ed  b y  Th e  O p e n  Gr o u p  2 

Copyright © 2016, The Open Group 

The Open Group hereby authorizes you to use this document for any purpose, PROVIDED THAT any copy of this document, 

or any part thereof, which you make shall retain all copyright and other proprietary notices contained herein. 

This document may contain other proprietary notices and copyright information. 

Nothing contained herein shall be construed as conferring by implication, estoppel, or otherwise any license or right under any 

patent or trademark of The Open Group or any third party. Except as expressly provided above, nothing contained herein shall 

be construed as conferring any license or right under any copyright of The Open Group. 

Note that any product, process, or technology in this document may be the subject of other intellectual property rights 

reserved by The Open Group, and may not be licensed hereunder. 

This document is provided "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, 

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A 

PARTICULAR PURPOSE, OR NON-INFRINGEMENT. Some jurisdictions do not allow the exclusion of implied 

warranties, so the above exclusion may not apply to you. 

Any publication of The Open Group may include technical inaccuracies or typographical errors. Changes may be periodically 

made to these publications; these changes will be incorporated in new editions of these publications. The Open Group may 

make improvements and/or changes in the products and/or the programs described in these publications at any time without 

notice. 

Should any viewer of this document respond with information including feedback data, such as questions, comments, 

suggestions, or the like regarding the content of this document, such information shall be deemed to be non-confidential and 

The Open Group shall have no obligation of any kind with respect to such information and shall be free to reproduce, use, 

disclose, and distribute the information to others without limitation. Further, The Open Group shall be free to use any ideas, 

concepts, know-how, or techniques contained in such information for any purpose whatsoever including but not limited to 

developing, manufacturing, and marketing products incorporating such information. 

If you did not obtain this copy through The Open Group, it may not be the latest version. For your convenience, the latest 

version of this publication may be downloaded at www.opengroup.org/bookstore. 

 

ArchiMate®, DirecNet®, Making Standards Work®, OpenPegasus®, The Open Group®, TOGAF®, UNIX®, UNIXWARE®, 

X/Open®, and the Open Brand X® logo are registered trademarks and Boundaryless Information Flow™, Build with Integrity 

Buy with Confidence™, Dependability Through Assuredness™, FACE™, the FACE™ logo, IT4IT™, the IT4IT™ logo, O-

DEF™, Open FAIR™, Open Platform 3.0™, Open Trusted Technology Provider™, Platform 3.0™, the Open O™ logo, and 

The Open Group Certification logo (Open O and check™) are trademarks of The Open Group. All other brands, company, 

and product names are used for identification purposes only and may be trademarks that are the sole property of their 

respective owners. 

Java® is a registered trademark of Oracle and/or its affiliates. 

 

Microservices Architecture 

Document No.: W169 

 

Published by The Open Group, July 2016. 

Any comments relating to the material contained in this document may be submitted to: 

The Open Group, 44 Montgomery St. #960, San Francisco, CA 94104, USA 

or by email to: 

ogpubs@opengroup.org 

http://www.opengroup.org/bookstore
mailto:ogpubs@opengroup.org


Microservices Architecture 

 

www.opengroup.org A Wh i t e  P ap e r  P u b l i s h ed  b y  Th e  O p e n  Gr o u p  3 

Table of Contents 

Executive Summary ................................................................... 5 

What is a Microservices Architecture? ....................................... 7 

Microservices Architecture Style .............................................................. 7 

The Problem Space .................................................................................. 8 

Combination of Distinctive Features ....................................................... 10 

Components, their Interaction and Governance ........................................ 10 

Granularity ........................................................................................... 10 

Built on Established Heritage ................................................................. 11 

Key Defining Characteristics of an MSA ................................................. 12 

Other Related Characteristics of MSA ..................................................... 13 

Key Governing Principles of Microservices Architecture .......................... 15 

SOA and MSA ........................................................................ 16 

Question 1: Vision and Intent Comparison ............................................... 17 

Question 2: Entry Criteria/Applicability for Using One Style .................... 18 

Question 3: Business Drivers .................................................................. 19 

Question 4: Characteristics Comparison .................................................. 20 

Question 5: Architecture Paradigm and Style Comparison ........................ 20 

Question 6: Architectural Principles ........................................................ 20 

CASE STUDY: MSA for a Hotel Central Reservation System ... 22 

Introduction .......................................................................................... 22 

Business Scenario .................................................................................. 22 

MSA-Based Solution ............................................................................. 23 

Result ................................................................................................... 23 

Conclusion ............................................................................................ 24 



Microservices Architecture 

 

www.opengroup.org A Wh i t e  P ap e r  P u b l i s h ed  b y  Th e  O p e n  Gr o u p  4 

CASE STUDY: Rainyday Grocer ............................................. 25 

Introduction .......................................................................................... 25 

Business Scenario .................................................................................. 25 

MSA-Based Solution ............................................................................. 26 

Results ................................................................................................. 31 

Conclusion ............................................................................................ 31 

APPENDIX A: Service Granularity ......................................... 32 

Glossary .................................................................................. 34 

References ............................................................................... 37 

About the Authors ................................................................... 38 

Somasundram Balakrushnan, Salesforce.com (MSA Project Co-Chair) ...... 38 

John Bell, Ajontech LLC ....................................................................... 38 

Benjamin Currier, Hewlett Packard Enterprise ......................................... 38 

Ed Harrington, Conexiam ....................................................................... 38 

Brian Helstrom, IBM ............................................................................. 38 

Peter Maloney, Raytheon Company ........................................................ 38 

Ovace Mamnoon, Hewlett Packard Enterprise (MSA Project Co-Chair) ..... 39 

Marcelo Martins, IBM ........................................................................... 39 

Acknowledgements .................................................................. 40 

About The Open Group ........................................................... 41 

 



Microservices Architecture 

 

www.opengroup.org A Wh i t e  P ap e r  P u b l i s h ed  b y  Th e  O p e n  Gr o u p  5 

 

Boundaryless Information Flow 

achieved through global interoperability 

in a secure, reliable, and timely manner 

Executive Summary 

There is much debate about what constitutes a Microservice and a Microservices 

Architecture (MSA), and whether they represent an evolution or a revolution. 

This White Paper presents the viewpoint of The Open Group SOA Work Group, 

developed through diligent research of the current viewpoints in the industry Work 

Group members. It provides a clear and specific definition of Microservices and 

MSA, distills their core principles and key characteristics, and provides a comparison 

of MSA with Service-Oriented Architecture (SOA). 

There is growing impetus in the industry for agility, cost optimization, and shifts 

between Capital Expenses (CapEx) and Operating Expenses (OpeEx). There is the 

advent of cloud computing and the Internet of Things (IoT). Digital enterprise 

transformation is underway. MSA is proving to be the enabler for all of these, 

provided it is done right. Also, MSA is conducive to the DevOps paradigm and 

evolving cloud-based architecture. The discussion and case studies in this White 

Paper highlight the recommended approach and the best practices in undertaking the 

transformation journey to MSA. 

But MSA is by no means a silver bullet. This White Paper presents both the ideal and 

the pragmatic approach to MSA: developing an understanding of where MSA is the 

right fit, and recommending a role for MSA in the Enterprise Architecture portfolio. 



Microservices Architecture 

 

www.opengroup.org A Wh i t e  P ap e r  P u b l i s h ed  b y  Th e  O p e n  Gr o u p  6 

Like most distributed architectures, MSA is also prone to the impacts of CAP 

theorem1 and data consistency complexities. Close attention to architecture and 

design should be paid to ensure appropriate data storage and management such that 

the right consistency (strong or eventual) is achieved. 

The paper delves into the merits of the “designed to fail” paradigm. Microservices 

can fail during runtime for many reasons. However, planning for dealing with this 

failure and providing resilience is a key part of an MSA. 

The MSA style of architecture enables The Open Group vision of Boundaryless 

Information Flow™. The idea that single units of business functionality are available 

as services across the organization makes it easier to invoke such functionality within 

and between enterprises. It means that a part of an enterprise can find and use the 

information it needs as provided by other parts of the enterprise or other enterprises. 

 

1 Refer to https://en.wikipedia.org/wiki/CAP_theorem. 

https://en.wikipedia.org/wiki/CAP_theorem


Microservices Architecture 

 

www.opengroup.org A Wh i t e  P ap e r  P u b l i s h ed  b y  Th e  O p e n  Gr o u p  7 

What is a Microservices Architecture? 

The Open Group defines an architecture (in the TOGAF® 9.1 standard) as: “the structure of components, 

their inter-relationships, and the principles and guidelines governing their design and evolution over time”. It 

defines architectural style as: “the combination of distinctive features in which architecture is performed or 

expressed”. 

Leveraging the above definitions, this White Paper examines and defines MSA in terms of: 

• The problem space 

• The combination of distinctive features 

• Components, their interaction, and governance 

Microservices Architecture Style 

MSA is a style of architecture that defines and creates systems through the use of small independent and self-

contained services that align closely with business activities. 

An individual microservice is a service that is implemented with a single purpose, that is self-contained, and 

that is independent of other instances and services. Microservices are the primary architectural building 

blocks of an MSA. 

 

Figure 1: Conceptual Representation of a Monolith Application 



Microservices Architecture 

 

www.opengroup.org A Wh i t e  P ap e r  P u b l i s h ed  b y  Th e  O p e n  Gr o u p  8 

 

Figure 2: Conceptual Representation of a Microservices Solution 

The Problem Space 

The need for MSA is driven by the pain points below. 

Decreasing the complexity of the development, operation, and management of services 

Changes to components in solutions of interdependent applications and services has the challenge of even a 

small fix requiring a long change cycle as the entire solution must be validated or, in the case of a monolithic 

application, rebuilt. Even SOA applications may have dependencies and interactions required by services 

choreography. 

The modularity of the components of a non-MSA application tends to weaken over time, making it harder 

and harder to make changes to only one small part of an application. The independent service nature required 

for an MSA allows for much easier development and deployment, since the services are both independent 

and self-contained. 

Scaling of a monolithic or tightly-coupled application requires scaling of the entire application solution, 

rather than just the portion that is demanding more resources. Non-MSA SOA applications may have 

dependencies or sophisticated choreography requiring additional changes. Scaling of an MSA is achieved 

much more easily because instantiation of additional services is performed independently. 

Simplify to decrease functional bloat 

Styles other than MSA often expand the scope of the component parts by adding new functionality to a 

component or its interdependencies. This complicates the solution or application leading to bloat and demand 

on the system. With MSA, keeping each service independent and self-contained to a single atomic business 

function reduces this risk of bloating. 



Microservices Architecture 

 

www.opengroup.org A Wh i t e  P ap e r  P u b l i s h ed  b y  Th e  O p e n  Gr o u p  9 

Allow faster response to changes in the marketplace or entry into a new market 

An MSA is synchronized to business unit change velocity needs. 

• There is joint ownership of the microservices by the business unit and the development team. 

• As a result of joint ownership and the principles of single responsibility, independence, and self-

containment, the microservices can be changed to cater to the changing needs of the business unit, 

irrespective of other business units of the enterprise. 

MSA development and deployment does not require a large pre-existing infrastructure. 

• Since a microservice is based on single atomic business functions they tend to be smaller. 

• Therefore, due to the MSA characteristics, microservices can be developed in small environments. A 

large integrated solution or large monolithic application requires large investment in a development 

environment to support the management of even a small change. 

The time and cost associated with development, operations, and management of large enterprise applications 

are reduced. 

• Testing of a large enterprise application is a significant investment in time and resources, even for 

relatively minor updates to the application. 

• Monolithic applications with centralized governance and data management tend to become dependent on 

a single technology addressing all business functions. 

• Coordination and management of large developer teams requires a large amount of effort to be devoted to 

these overhead functions. 

Advent of paradigms such as Continuous Integration (CI) and Continuous Deployment (CD), and the 
inability of the monoliths to meet these, as exemplified by the DevOps culture 

The DevOps culture emphasizes the collaborative nature of application development and maintenance. It 

focuses on the elimination of silos between development and operations; i.e., the use of autonomous teams 

which own the entire life cycle of an application. The distributed, independent nature of microservices lends 

itself naturally to implementation in this kind of culture. 

Continuous Integration (CI) and Continuous Deployment (CD) rely on near-constant integration of software, 

with automated deployment of the integrated code. The inherent modularity and independence of an MSA 

and its services lends itself very well to the CI and CD paradigms carried out by a number of distributed 

teams working off a controlled code base. 

The advent of cloud and the need to distribute workload elastically between on-premise and cloud 

MSA enables capabilities such as Web-Oriented Architecture (WOA) as well as allowing for leveraging the 

resilience and scalability offered by cloud. 

Service independence allows for services to run anywhere and so cloud becomes a natural place to expand 

through adding more instantiations in support of demand or through expanding functions and services to an 

application through the addition of new independent services, which can reside in the cloud. 



Microservices Architecture 

 

www.opengroup.org A Wh i t e  P ap e r  P u b l i s h ed  b y  Th e  O p e n  Gr o u p  10 

Highly responsive user experience 

The resilience provided through the parallelism of an MSA, which is enabled by the independence of the 

microservices, permits rapid failover and self-recovery. These characteristics result in high availability and 

seamless user interaction. 

Combination of Distinctive Features 

An MSA will generally contain the following features: 

• Software components are broken down into independent services (this is the fundamental feature of an 

MSA). 

• Services are independently deployable. 

• Services are mapped to atomic business capabilities. 

• Services are fully decoupled. 

• Scalability and resilience of the application are achieved through the independence of services and 

multiple parallel instances of services. 

Components, their Interaction and Governance 

The key characteristic of MSA is that software components are implemented as services, rather than, for 

example, as libraries. These services are independently replaceable and deployable. Services are typically 

implemented using mandatory well-defined, published interfaces. An MSA will aim for defined service 

boundaries to avoid interface changes which will affect multiple services, but in some cases this may be 

unavoidable. 

The applications built using MSA should keep the microservices decoupled and fully independent. Any 

choreography in an MSA is performed by the initiating application and not from within or by the 

microservices. This is done by leveraging simple protocols (such as REST) rather than complex products or a 

central tool. 

Governance in an MSA is decentralized or distributed. This allows the developer teams to focus on 

determining the best technology platform or language implementation to solve their particular problem, and 

not be trapped in a “one size fits all” paradigm. 

Granularity 

Determining the right granularity of services in an MSA is more of an art than a science. 

However, it is imperative for organizations to set the rules of thumb up-front in determining the right level of 

granularity. Taking a too coarse-grained approach to services can result in a “monolith”, while taking a too 

fine-grained approach can result in an anti-pattern, referred to as “nano-services” (see APPENDIX A: Service 

Granularity). 

A granularity line can be defined based on business activity, business agility, and other considerations. 



Microservices Architecture 

 

www.opengroup.org A Wh i t e  P ap e r  P u b l i s h ed  b y  Th e  O p e n  Gr o u p  11 

Services that fall around the granularity line are considered microservices; those way above are the monoliths 

and those way below are the nano-services. 

M
on

ol
it

h
N

an
o

 

Figure 3: Right Level of Granularity 

Built on Established Heritage 

An MSA builds on many well established architectural, design, development, and operations paradigms such 

as object-oriented programming, SOA (see the chapter on SOA and MSA), and Domain-Driven Design 

(DDD), which provides a set of principles and methods to manage complexity by identifying core and 

ancillary domains and addressing architecture, development, operations, teams, etc. within the bounded 

context of each domain. 

Another very relevant model is the scale cube presented in the referenced book “The Art of Scalability”.2 The 

scale cube defines a model for scalability through decomposition. Of particular interest in the scale cube is 

the y-axis which focuses on functional decomposition or services. 

 

2 Refer to http://theartofscalability.com. 

http://theartofscalability.com/


Microservices Architecture 

 

www.opengroup.org A Wh i t e  P ap e r  P u b l i s h ed  b y  Th e  O p e n  Gr o u p  12 

Key Defining Characteristics of an MSA 

The definition of MSA, earlier in this White Paper, articulates that it is composed of microservices as 

building blocks. This section does not distinguish between the characteristics that are specific to the 

microservices versus ones that are applicable to MSA. The intent is to identify the key characteristics of a 

solution that is architected as an MSA and, as such, consists of microservices. 

Most of these characteristics are interrelated to some degree. 

Service Independence 

A key imperative for MSA is service independence. As business needs change and evolve, the impact to 

every service must be manageable. Service independence minimizes the impact to the service infrastructure 

by identifying and isolating those services that undergo constant churn. Once identified, these services should 

be upgradeable or replaceable without any additional changes to the software landscape. Since each service is 

also self-contained, redeployment of each independent service is simplified since there are no service 

dependencies to manage. Simpler service redeployments streamline release processes since fewer software 

assets need to be managed from release to release. 

A microservice is independent of other microservices or other services. Instances of a microservice are 

independent of the other instances of the same microservice. Development and deployment of a microservice 

is independent of the development and deployment of other services. 

Single Responsibility 

Single responsibility, defined by MSA, is the direct alignment of a service to a singular business activity. For 

the purpose of this discussion, a business activity can be described as a unit of work performed by the 

organization that supports an existing business process or function. For single responsibility, the obligation of 

the service is to map completely to the business activity and deliver whatever business logic is necessary to 

fulfill the activity. Having each service associated with a single business activity enables the tracking of 

business change impact through the software service landscape. Impacted services can be more readily and 

easily identified when supporting a single business responsibility. 

It is important to decompose the target business process to the right level to achieve the single responsibility, 

aligned to an atomic business activity, as well as to achieve the decoupled nature to support the resilience and 

scalability of the solution. 

The decomposition can be guided by the scale cube and its three dimensions of scaling, particularly the y-

axis scaling, which emphasizes the functional decomposition through splitting of applications into multiple 

microservices. 

The other influencing concept is the bounded context from DDD, which can help determine the right level of 

decomposition through context mapping. 

Self-Containment 

Self-containment dictates that a service shall encompass all external IT resources (e.g., data sources, business 

rules) necessary to support the business activity. In addition, self-containment necessitates that service 

dependencies falling outside the scope of the development team should be minimized or preferably 



Microservices Architecture 

 

www.opengroup.org A Wh i t e  P ap e r  P u b l i s h ed  b y  Th e  O p e n  Gr o u p  13 

eliminated. By adhering to self-containment, services are inherently more easily replaceable and upgradeable. 

Along with single responsibility, this characteristic also promotes single ownership of the service since it 

encapsulates not only specific business requirements (single responsibility) but also specific software 

dependencies (self-containment). 

Microservices are packaged with containers and components as single-deployment units. 

The self-containment principle does not remove the need for orchestration between microservices. The 

orchestration function is moved to the application and user interaction layer. Hence, to achieve self-

containment, proper granularity in decomposition is essential. 

Highly Decoupled 

In order to maintain minimal service dependencies, microservices must be highly decoupled. To achieve this 

decoupling, the business function must be capable of being decomposed down to the level where a 

microservice is implementing a single atomic business function. It is this decomposition, and the consequent 

removal of dependencies between the atomic business functions, that permits the service independence and 

self-containment required in an MSA. 

By relying heavily on existing protocols whose sole purpose is to route messages (HTTP, for example), the 

needs of a service can be reduced to receiving the message request, applying the appropriate business logic, 

and generating a message response. MSA discourages the use of external data transformation or protocol 

bridging services since they introduce additional tightly-coupled service dependencies that will need to be 

managed during upgrades. MSA endorses the concept of smart endpoints, where all logic needed to manage 

the incoming request and produce an appropriate response remains encapsulated within the service. 

Highly Resilient 

An MSA must be a highly-resilient architecture. Its microservices must be designed for potential failures 

because individual service failures should not impinge negatively on the user experience. Since a 

microservice represents a single responsibility and is self-contained, a service failure could mean that a given 

business function or process is unable to complete successfully. Lengthy service downtime could also have a 

significant impact on the entire business. Thus, mechanisms must be in place to ensure timely service 

recovery. Real-time service monitoring can provide a proactive means for identifying services that are 

struggling under heavy load or unable to satisfy existing Service-Level Agreements (SLAs). Real-time 

monitoring of business metrics also provides insight to future business activity changes that will ripple down 

to IT services. Further, because of the independence of the underlying microservice, new instantiations will 

be automatically deployed immediately to allow for business continuity without the resolution of the failure 

itself. 

Other Related Characteristics of MSA 

Decentralized Data Management 

Data management is performed by individual services, which are not managed or choreographed in the 

performance of data updates. Data consistency is achieved eventually, rather than instantaneously. 



Microservices Architecture 

 

www.opengroup.org A Wh i t e  P ap e r  P u b l i s h ed  b y  Th e  O p e n  Gr o u p  14 

Implementation-Agnostic 

The implementation can support multiple development platforms (e.g., Java®, C++, JS, Ruby, Python, etc.) 

and technologies, and can be deployed in any of the containers or virtual machines that support these 

development platforms. 

The focus here is on the solution and not each individual microservice. Individual microservices may not be 

implementation-agnostic, but the solution is. 

Scalability and Resilience through Parallelism 

Though each microservice will fail, the solution is highly resilient. This is achieved by instantiating multiple 

instances of a microservice in parallel. 

This ability to deploy multiple parallel instances results in elasticity and scalability. The number of parallel 

instances can be increased or decreased to meet the workload demands. 

For this characteristic, instrumentation and monitoring as listed below is a requirement. 

Well-Defined Interface with a Published Contract 

The interface (API) for a microservice is well-defined and published (i.e., available to the general developer 

community). This API is consistent across MSA implementations, to encourage re-use and avoid breakage 

(point-to-point integration). 

Allows Independent Governance 

This is consistent with the idea of a single team ownership for the cradle-to-grave lifecycle of a microservice. 

Such a team owns every aspect of its microservices including governance. Hence, governance may be 

decentralized and autonomous. 

Single Team End-to-End Ownership 

One team will own all aspects of a microservice. Its governance, development, testing, deployment, and 

operations. This is a DevOps model. 

Instrumentation to Support Elasticity and Resilience 

An MSA should have provision for instrumentation. An MSA must have the ability to monitor the services 

and dynamically create instances as needed. 

Elasticity is the ability of a system to autonomously and dynamically adapt its capacity to handle varying 

workloads. Proper instrumentation and monitoring ensure the overall solution is resilient and scalable. 



Microservices Architecture 

 

www.opengroup.org A Wh i t e  P ap e r  P u b l i s h ed  b y  Th e  O p e n  Gr o u p  15 

Key Governing Principles of Microservices Architecture 

No. Principle Name Statement Rationale Implications 

1 Independent 
Services 

A microservice is 
independent of all 
other services. 

Independence of services 
enables rapid service 
development and 
deployment, and permits 
scalability through 
instantiation of parallel, 
independent services. This 
characteristic also provides 
resilience; a microsservice is 
allowed to fail and its 
responsibilities are taken 
over by parallel 
instantiations (of the same 
microservice), which do not 
depend on other services. 
When a microservice fails, it 
does not bring down other 
services. 

Both design and runtime 
independence of services 
are required. It is 
necessary for the business 
to determine whether 
providing scalability and 
resilience of the business 
function are paramount 
considerations. If so, MSA 
provides a means of 
achieving these 
characteristics. 

2 Single 
Responsibility 

A microservice 
focuses on one task 
only and on doing it 
well. A microservice 
focuses on delivering 
a small specific 
business capability. 

This develops ideas 
including the principle of 
Single responsibility, Open-
closed, Liskov substitution, 
Interface segregation, and 
Dependency inversion 
(SOLID), which is a tenet of 
Object-Oriented Design 
(OOD) and the core 
business domain and 
bounded context of DDD. 

Microservices are aligned to 
atomic business functions, 
which can be modified and 
deployed independently. To 
achieve this it is critical that 
each microservice caters to 
a single functional 
responsibility. 

This requires business 
function decomposition 
into atomic functional 
services and data 
exchanges. 

3 Self-Containment A microservice is a 
self-contained, 
independent 
deployable unit. 

In order for a microservice to 
be independent, it needs to 
include all necessary 
building blocks for its 
operation, or there will be 
dependencies to external 
systems and services. 

This has architecture, 
design, implementation, 
and deployment 
implications. 

 



Microservices Architecture 

 

www.opengroup.org A Wh i t e  P ap e r  P u b l i s h ed  b y  Th e  O p e n  Gr o u p  16 

SOA and MSA 

In order to better understand the contrast of MSA with (SOA, let us first understand the definition of an SOA. 

The standard definition from The Open Group3 says that service-orientation is a way of thinking in terms of 

services and service-based development and the outcomes of services. A service: 

• Is a logical representation of a repeatable business activity that has a specified outcome (e.g., check 

customer credit; provide weather data, consolidate drilling reports) 

• Is self-contained 

• May be composed of other services 

• Is a “black box” to consumers of the service 

An architectural style is the combination of distinctive features in which architecture is performed or 

expressed. The SOA architectural style has the following distinctive features: 

• It is based on the design of services – which mirror real-world business activities – comprising the 

enterprise (or inter-enterprise) business processes. 

• Service representation utilizes business descriptions to provide context (i.e., business process, goal, rule, 

policy, service interface, and service component) and implements services using service orchestration. 

• It places unique requirements on the infrastructure – it is recommended that implementations use open 

standards to realize interoperability and location transparency. 

• Implementations are environment-specific – they are constrained or enabled by context and must be 

described within that context. 

• It requires strong governance of service representation and implementation. 

• It requires a “litmus test”, which determines a “good service”. 

In SOA a service may be composed of other services; in MSA we define a service as independent and self-

contained, which implies that it cannot be composed of other services. Herein lies one of the main differences 

between the SOA and MSA architectural styles. In examining each bullet we find that for the most part the 

frame of a microservice will in fact align with that of a service of the SOA architectural style, with the 

exception of how much of the business process it encapsulates, as many business processes contain many 

services in order to complete the task. In an MSA this would be a conflict in purpose. This implies that MSA 

is really a subset or special architectural form of SOA. MSA provides an approach to delivering SOA in an 

effective manner for the right set of business drivers. 

 

3 See www.opengroup.org/soa/source-book/soa/soa.htm. 

http://www.opengroup.org/soa/source-book/soa/soa.htm


Microservices Architecture 

 

www.opengroup.org A Wh i t e  P ap e r  P u b l i s h ed  b y  Th e  O p e n  Gr o u p  17 

The following section provides a side-by-side comparison of the key characteristics of SOA and MSA and 

provides guidelines for when each architecture would be most appropriate. 

Question 1: Vision and Intent Comparison 

Compare and contrast the vision that epitomizes SOA and MSA. What needs, drivers, pain points, and gaps 

in the industry led to the evolution of the SOA and MSA paradigms? What were the leading thoughts and 

views that drove the respective evolutions? 

SOA began as an attempt to control the costs of distributed computing by leveraging infrastructure that was 

originally intended for the web. SOA also emerged in part as an approach to combat the challenges of the 

large monolithic applications. It was envisaged as a way to “service-orient” business functions to be re-usable 

across an enterprise, decoupling the complex systems in the enterprise landscape. It is an approach that aims 

to promote the re-usability of software; two or more end-user applications, for example, could both use the 

same services. It aims to make it easier to maintain or rewrite software, as theoretically we can replace one 

service with another without anyone knowing, as long as the semantics of the service remain the same. 

The primary motivation of SOA was to increase agility by allowing the underlying IT infrastructure and 

architecture to change in response to changing business needs. The notion of SOA started with web services 

and evolved into a more general SOA paradigm where a service provider exposed a set of business-aligned 

services to service consumers who did not have to be concerned with implementation or technological 

details. 

Some by-products were the ability to share commonly recurring services, to re-factor functionality into 

common services and their variations. 

Precursors of SOA, such as distributed object technology, could be complex. 

Initial attempts at SOA were simple, layered on top of rising technologies such as the Hypertext Transfer 

Protocol (HTTP) and the eXtensible Mark-up Language (XML). Technologies such as XML-RPC or XML 

over HTTP provided a simple synchronous Remote Procedure Call (RPC) capability that was easily 

implemented on top of the web technologies then in use. While this led to a simple means of providing basic 

web services as RPC invocations, it required extension to effectively handle more complex problems. This 

additional complexity led to technologies such as the Simple Object Access Protocol (SOAP), which broke 

the dependency upon specific lower-level protocols. As systems became more complex, patterns such as the 

Enterprise Service Bus (ESB) evolved to address the issues related to the growth and complexity of SOA. 

However, despite many efforts, effective implementation of SOA remains a challenging problem. The 

mixture of technologies and the need to understand how the myriad of technology solutions relate to the 

underlying business problems has often made environments that leverage SOA large and complex requiring 

highly skilled practitioners. This has led to a certain dependence upon the narrative set out by various 

vendors in this space. 

MSA developed as a push back against this complexity. It has emerged from the lessons learned in real-world 

use. The idea is to focus on the single business function and create services that implement the operations 

required by that function. (A key part of developing an MSA is to align with the single responsibility 

principle, where a service has responsibility for a single part of the functionality provided by the software. 

This requires strict partitioning of functionality to ensure that inadvertent coupling between functions does 

not occur.) The MSA paradigm is a variant (subset) of SOA, where focus has been placed on the runtime 



Microservices Architecture 

 

www.opengroup.org A Wh i t e  P ap e r  P u b l i s h ed  b y  Th e  O p e n  Gr o u p  18 

autonomy of each service, stressing the independence (of both design and runtime) as well as resilience of 

each service. Deployed instances of the services are also independent of each other and of other services. 

MSAs are focused on rapidly developed and deployed services that do not require an extensive overhead, and 

can be quickly updated and replaced independently. Ultimately, an MSA is an SOA with this independence 

constraint. 

Microservices are a means of implementing an SOA in which individual teams can choose their often 

differing underlying technologies and deployment schedules. Since functional areas – aka business units or 

Lines of Business (LOBs) or silos – can rapidly be developed without significant dependencies on other 

functional areas, MSA allows the fine-grained services to be built first for the silos. The need for integration 

of services or orchestration then enters into the picture and microservices are not necessarily a right fit for 

these cross-cutting cross-domain applications. 

Question 2: Entry Criteria/Applicability for Using One Style 

Compare and contrast the technical and business conditions and decisive factors that would drive the choice 

between implementing an MSA or SOA as the solution to a business need. Factors will include deployment 

schedule, service consumer environment, and development cycles. Provide usage guidelines to aid the 

decision-making process. 

Microservices should be considered for implementing functionality that needs to be resilient at an operational 

level, that can be encapsulated as a component independent of all other components of an overall system, and 

that may be subject to relatively frequent change and releases due to business conditions. Although there are 

no hard and fast rules forcing the choice of an architecture to meet a particular business need, answers to the 

following table of questions provides guidance indicating situations where an MSA may be the best choice as 

opposed to a conventional SOA implementation. 

Question MSA Candidate SOA Candidate 

Can the solution be broken up into 
a collection of individual and 
independent service components? 

MSA design revolves around the 
concept of independent services. 

Independence of services is one of 
the key tenets of MSA; if services 
cannot be independent, MSA is not a 
good choice. 

Does the solution require resilience 
and elastic scalability? 

An MSA provides resilience and 
scalability through parallelism. 

For some applications, another 
approach to achieve these ends 
(e.g., “big iron”) may be more cost-
effective. 

Will the solution need to use 
orchestration across services to 
implement functionality? 

“Smart endpoints and dumb 
pipes” – MSA relies on a 
Representational State Transfer 
(REST)-like philosophy for low-
level choreography. 

If more complex protocols, such as 
Business Process Execution 
Language (BPEL) or Web Service 
Choreography (WS-Choreography) 
are required, or a central tool, MSA is 
not a good choice. 

Can the service API be defined 
atomically in respect to other 
business resources? 

If yes, this atomicity is likely to 
foster the service independence 
which is key to an MSA. 

Loose or decoupled services are 
desirable for an SOA; not otherwise a 
driver. 



Microservices Architecture 

 

www.opengroup.org A Wh i t e  P ap e r  P u b l i s h ed  b y  Th e  O p e n  Gr o u p  19 

Question MSA Candidate SOA Candidate 

Is there expected to be a high rate 
of churn or update of individual 
services? 

If the API definition, service 
structure, and operational 
requirements are not stable, MSA 
may be a better candidate. 

High rates of service update will likely 
be more complicated to support in a 
traditional SOA infrastructure. 

Is this a new application (or 
business area) for the enterprise, or 
is this building on top of a legacy 
application? 

  

Is this a new application without an 
existing installed base? 

New developments represent 
opportunities to design from the 
ground up; MSA may represent 
the most cost-effective solution. 

Replacing an existing (possibly 
monolithic) application requires a 
business case evaluation. 

Is the application 
development/deployment cycle 
short? 

An MSA solution offers low 
overhead and rapid parallel 
development. 

A more complex full SOA may take 
longer to develop and deploy. 

Does the enterprise already have 
an existing SOA stack and a heavy 
technical investment in SOA-based 
products (ESB, Business Process 
Management (BPM), etc.)? 

  

What are the maintenance costs of 
the existing infrastructure? 

High operating and maintenance 
costs may open the door for a re-
architecting to an MSA with 
substantial cost savings over the 
project lifetime. 

If operating costs are not a driver, the 
re-architecting effort may not be 
worthwhile. 

Does the enterprise have a 
substantial base of domain 
expertise invested in the current 
design versus purchased (vendor) 
SMEs? 

Trading contract expertise for the 
less complicated development 
needed for MSA may be 
economical in the long run. 

High-level in-house expertise may be 
less expensive overall over the long 
term than re-working the entire 
infrastructure. 

At what level is service governance 
managed? 

MSA emphasizes local, 
distributed governance to avoid 
the need for coordination and the 
penalties of centralization. 

Centralized governance is compatible 
with SOA. 

Question 3: Business Drivers 

From a business (not technical) perspective, identify decision points that might lead one to choose SOA or 

MSA, as the implementation architecture. 

Question MSA Candidate SOA Candidate 

Can the organization support 
multiple development teams 
working simultaneously and 
independently? 

If yes, fits well with the distributed 
development nature of an MSA. 

If no, MSA development will be 
serialized, reducing its attractiveness. 



Microservices Architecture 

 

www.opengroup.org A Wh i t e  P ap e r  P u b l i s h ed  b y  Th e  O p e n  Gr o u p  20 

Question MSA Candidate SOA Candidate 

Does the business already have an 
SOA infrastructure in place? 

If not, MSA can be an attractive 
choice. 

If so, the decision to use an MSA will 
be driven by other factors. 

Is resilience of the functionality 
provided by the component in 
question paramount? 

MSA offers an inexpensive 
means of providing resilience for 
appropriate applications. 

Resilience may be more expensive to 
provide as it is application-
dependent. 

What is the deployment schedule 
and what are the drivers for the 
service update schedule? 

Shorter cycles favor an MSA. Longer development/deployment 
cycles will not disadvantage SOA. 

Is this a mature business area 
where the enterprise is dominant? 

Cost of re-architecting is not 
necessarily worthwhile. 

Existing infrastructure and expertise 
support SOA. 

Is this a new solution, an 
exploratory, or niche business? 

The low cost of MSA and rapid 
development and deployment 
time favor it. 

It may be hard to achieve cost and 
time-to-market targets with more 
complex architecture. 

Question 4: Characteristics Comparison 

Compare and contrast the defining and supporting characteristics of MSA and SOA as documented by the 

Work Group. 

MSA SOA 

In an MSA, a service has to be independent of other 
services. 

In an SOA, there is no requirement for independence. 

In an MSA, parallelism and architectural resilience 
and scalability are achieved through this 
independence. 

In an SOA, there is freedom to select how to achieve 
these goals. 

MSA is constrained by its focus on single 
responsibility per service. 

An SOA is free to support multiple responsibilities 
within a service. 

Within an MSA, services cannot be comprised of 
other services due to the independence requirement. 

Full SOA allows services to be built through 
orchestrations and choreographies. 

Question 5: Architecture Paradigm and Style Comparison 

Compare and contrast the two architectural styles. 

MSA is a style of architecture that defines and creates systems through the use of small independent and self-

contained services aligned closely with business activities. MSA is a subset of full SOA with the added 

constraints of service independence. 

Question 6: Architectural Principles 

Compare and contrast the architectural principles of SOA and MSA. Per The Open Group (the TOGAF 9.1 

standard, Section 23.2): “Architecture principles define the underlying general rules and guidelines for the 



Microservices Architecture 

 

www.opengroup.org A Wh i t e  P ap e r  P u b l i s h ed  b y  Th e  O p e n  Gr o u p  21 

use and deployment of all resources and assets across the enterprise. They reflect a level of consensus among 

the various elements of the enterprise, and form the basis for making future decisions. Each architecture 

principle should be clearly related back to the business objectives and key architecture drivers.” 

Since MSA is a subset of SOA, the basic architectural principles for MSA and SOA are identical. 

Particularly, both architectures share the key principles of independence: 

• Location-independence: There is no preferred location for service consumers and service providers. They 

could transparently both be located on the same system, or in different organizations and in different 

physical locations. 

• Implementation-independence: There is no requirement for specific platform or implementation 

technologies for service consumers and service providers to adopt. They should not need to be aware of 

the other party’s technical environment or implementation details in order to interoperate. 

• Protocol-independence: From an architecture perspective, the SOA or MSA can be constructed using any 

available protocols, but any specific implementation may choose to support a limited set of transport and 

message protocols. 

Another key shared principle is that of self-contained services. The principle of self-containment is achieved 

when a service can be invoked with only the information available in its description. The service consumer 

should be isolated from the implementation details of the service. Self-contained services are encapsulated 

and do not depend on other services for their state, or are stateless. 

The distinguishing characteristic of an MSA is that of service independence. An MSA service is independent 

of all other services. Independence of services enables rapid service development and deployment, and 

permits scalability through instantiation of parallel services. This characteristic also provides resiliency to the 

MSA; services are expected to fail and their responsibilities taken over by parallel instantiations. 

By contrast, the corresponding principle for a full SOA is loosely-coupled services, where service 

consumption is insulated from underlying implementation. This insulation minimizes changes to consumers 

of services over time, even when versions change or changes are needed for qualities of service or protocol 

support. It may use an integration layer to provide support for connections, protocol mediation, security, and 

other qualities of service. 

 



Microservices Architecture 

 

www.opengroup.org A Wh i t e  P ap e r  P u b l i s h ed  b y  Th e  O p e n  Gr o u p  22 

CASE STUDY: MSA for a Hotel Central Reservation System 

Introduction 

This case study is based on a composite of customers in the hotel industry. The specific scenario is a subset 

of common scenarios encountered within this industry. The mythical business represented here is a mid-size 

chain of hotels with 50 owned properties, 30 managed properties, and 30 franchised properties. We will call 

this company One Ten Hotels or OTH. This case study discusses the use of an MSA and how it meets the 

needs of the scenarios discussed. 

Business Scenario 

OTH is a mid-size global chain of hotels that has grown large enough that it sees a potential business 

advantage in creating its own Central Reservation System (CRS). The CRS needs to be: 

• Globally accessible 

• Highly available 

• Easily built and maintained 

• Developed and deployed quickly 

A simple CRS system needs to expose the following resources: 

• Hotel Information: Description of a hotel and its rooms including text, photographs, and other media 

types. The basic form of this resource includes hotel address and contact information. The following 

resources are directly related to a specific hotel but may be treated as top-level resources or separate 

services: 

— Hotel Inventory and Availability: Vacancies or unsold rooms during any specific range of dates. 

— Hotel Room Types: Specific types of rooms; for example, King Bed or Double Queen. Some room 

types maybe virtual such as “Run of the House” which matches any available room. 

— Stay Offers: An offer to stay in a specific hotel and type of room for a specific period of time at a 

certain price. Stay offers are dependent on the underlying pricing model which in this case is not 

exposed. 

• Guest Profile : Collected information about each guest including name, address, and phone number. May 

also provide access to loyalty information, stay history, and credit cards for room guarantees. 

• Reservations: A contract between the hotel and a guest to provide services, normally a rental of a specific 

type of room in a specific hotel for a specific period of time at a specific price for some time in the 

future. 

The typical work flow for a guest to create a reservation is: 

• Locate and select a hotel available for the desired arrival and departure dates. 



Microservices Architecture 

 

www.opengroup.org A Wh i t e  P ap e r  P u b l i s h ed  b y  Th e  O p e n  Gr o u p  23 

• Select an offer to stay in the hotel at a specific price in a particular type of room. This offer may also 

include meals or other add-ons. 

• Identify the guest (this may already be done if the guest is logged into the system) and means of 

guaranteeing the reservation. 

• Complete the reservation and issue a reservation number. 

MSA-Based Solution 

The CRS requires high availability. Also, since demand for a reservation service varies widely depending on 

the time of day and the day of the week and month, implementing a dynamically scalable or elastic cloud 

service should reduce ongoing operational costs. It is also desired to use separate development teams to work 

in parallel on the core services supporting Hotel Information services, Guest Profile services, and 

Reservations services and their supporting applications simultaneously. This should accelerate development 

and delivery times. 

An MSA-based solution was suggested to meet these needs. Both the Hotel Information and Guest Profile 

services can be launched without dependencies on any other components or services. However, a reservation 

binds the guest with the hotel (and type of room) and impacts the available inventory at the hotel for the 

period of time covered by the reservation. The application layer normally already has the references to both 

the guest and the hotel and can easily provide these for a create reservation operation on a reservations 

service. But when a reservation is created, inventory on the hotel must also be adjusted. Creation of a 

transaction with dependencies on other services is a violation of the principles behind an MSA. 

There are a number of ways to work around the dependency between the Reservation services and the Hotel 

Information services. In this case, an operation was added to the Hotel Information services to reserve 

inventory. This operation returns a unique inventory ID and removes rooms from the inventory but does not 

assign rooms to the reservation. The application layer is required to retrieve this inventory ID from the hotel 

and provide it to the Reservations service when creating a reservation. If the create reservation operation 

fails, then the inventory can be returned to the hotel using the hotel’s cancel inventory operation. An 

asynchronous clean-up operation can be run periodically between the inventory and reservation stores to 

make certain that all reserved inventory has a reservation and returning inventory with no reservations to the 

pool. 

The create reservation operation (often implemented as a PUT or POST request from the HTTP protocol) 

accepts the reference to the guest profile of the primary guest, the hotel, and the inventory ID along with 

arrival and departure information, room types and offers, and other information relevant to the reservation. 

Since all of the information is provided by the application creating the reservation, the dependency between 

the Reservations services and the Hotel Information and Guest Profile services is broken and the 

Reservations services can be implemented as a microservice. 

Result 

While this case study is presented in a generic fashion, it is based on a real architecture that is currently in the 

process of being implemented. The independence of the service areas has allowed multiple teams to be 

brought in to extend the services to areas beyond the ones discussed in this case study. Many services 

required to support a hotel ecosystem can be implemented independently of the other services in the 



Microservices Architecture 

 

www.opengroup.org A Wh i t e  P ap e r  P u b l i s h ed  b y  Th e  O p e n  Gr o u p  24 

ecosystem. This allows for rapid development of new solutions. In this case, the rapid development addresses 

the time-to-market requirements of the organization developing the solution. The resulting MSA solution is 

also expected to meet the needs for rapidly scaling to accommodate the large number of customers and 

partners that are lined up to use the services. 

Conclusion 

By placing the independence restriction on the SOA, in this solution the resulting MSA has enabled: 

• Parallel and independent development and deployment of services 

• Scalability through elasticity 

The solution is also expected to be resilient through the elastic deployment of parallel service instances and 

agile since individual services can be changed to rapidly meet new requirements without impacting other 

services. While MSA may not be suitable for every situation, it is a compelling choice for problems that 

benefit from the independence constraint. 

 



Microservices Architecture 

 

www.opengroup.org A Wh i t e  P ap e r  P u b l i s h ed  b y  Th e  O p e n  Gr o u p  25 

CASE STUDY: Rainyday Grocer 

This case study is a fictional MSA-based solution deployed in the cloud. 

Introduction 

Rainyday Grocer is a cloud-based online grocer that provides customized delivery of groceries. Their 

business model is targeted towards those “rainy day” moments where a person needs groceries but is unable 

to go the bricks-and-mortar grocery store to shop. 

Business Scenario 

Rainyday Grocer (RG) supports three different ordering options. A customer can: 

1. Place an order with one of the approved grocery stores, send the item list, and order confirmation to RG 

via a web interface or a mobile application. 

2. Send a grocery list to RG via a web interface or a mobile application. 

3. Select from RG grocery items list and place an order. 

There are two delivery options: 

1. Doorstep delivery with text message confirming delivery. 

2. Collect groceries order from one of the RG collection points. 

RG does not own any inventory, supply channels, distribution channels, or data centers. They leverage other 

service providers for all services, and manage quality through a careful selection process and SLAs. They 

maintain a lean team of 50 people, only 5 of whom are IT-focused, to manage their operations across five 

states in the Eastern US. 

The customer has to accept a set of constraints to place a successful order: 

• The customer must have an active account in good standing (less than five floods; i.e., negative points). 

• The customer must have a valid payment method registered. 

• An order is limited to 10 or less items with a cumulative weight not more than 25lb. 

• RG does not guarantee any specific brands. 

• There is a four-hour window from order confirmation to requested delivery. 

• An order cannot include medicines or hazardous materials. 

• The delivery address must be a physical address. 

• The delivery address must be within 50 miles of a city center. 

• The customer must provide feedback within 24 hours, else get a flood. 



Microservices Architecture 

 

www.opengroup.org A Wh i t e  P ap e r  P u b l i s h ed  b y  Th e  O p e n  Gr o u p  26 

MSA-Based Solution 

RG is building an MSA-based solution. 

The recommended approach for an MSA-based solution is to drive it from the business needs and address the 

business processes. 

This case study examines the MSA solution for the receive order sub-process of RG. The focus is on building 

blocks and to highlight the MSA characteristics and principles. 

The RG business process is shown in Figure 4, in Business Process Modeling Notation (BPMN). 

R
a
in

y
d

a
y

 G
ro

c
e
r Receive Order 

sub-Process

Procure Grocery

sub-Process

Deliver Groceries

sub-Process

Order List

With 

Instructions

Delivery Successful

Business Activity

Text to 
Customer

Yes – Delivery Confirmation

Retry

<<Some>>

sub-Process
No

Update Update

Order Accepted

 

Figure 4: Order-Delivery Process 

The receive order business process is decomposed as shown in Figure 5. 



Microservices Architecture 

 

www.opengroup.org A Wh i t e  P ap e r  P u b l i s h ed  b y  Th e  O p e n  Gr o u p  27 

R
a
in

y
d

a
y

 G
ro

c
e
r 
–
 R

e
c

e
iv

e
 O

rd
e
r 

P
ro

c
e

s
s

A
c
co

u
n
t 

M
a
n

a
g

e
m

e
n
t

C
u

s
to

m
e
r

R
e
c
e
iv

e
 O

rd
e

r

Validate

Credentials

Apply Account 

Validation 

rules

Account 

Login
Take delivery Provide Feedback

C
u

s
to

m
e
r

Place Order

Data 

Object

Provide 

Information

Failed

Receive 

Order

Provide 

Estimate

Confirm 

Order

Item 

List

Pricing

Account 

Access 

Successful

Success

Send

To

Procurement
Item 

List

 

Figure 5: Receive Order Sub-Process Decomposed 

The above business process shows the more granular activities. The ones circled in red represent Atomic 

Business Activities for RG. 

Adhering to the single responsibility principle of MSA, RG wants each of the atomic business activities to be 

fulfilled by an independent and self-contained microservice. 

As RG is a lean organization consisting of only five IT team members they realize they will need to 

outsource this development work. 

Taking advantage of the decentralized governance and polyglot development model of MSA, RG identifies 

business owners for each of the business processes and with responsibility to create autonomous teams to 

address the needs of that business process. But to avoid total anarchy, they also institute a lean enterprise 

governance framework as depicted in Figure 6 and Figure 7. 



Microservices Architecture 

 

www.opengroup.org A Wh i t e  P ap e r  P u b l i s h ed  b y  Th e  O p e n  Gr o u p  28 

 

Figure 6: MSA Governance Framework at RG 

 

Figure 7: MSA Governance 

Consistent with the MSA principles, there is single team ownership of each microservice. (One team can own 

multiple microservices, but vice versa is not permitted.) Each team is autonomous – i.e., self-governs the 

entire lifecycle of each of its microservices – and is headed by the business activity owner. The business 

owner and the architects have a seat on the enterprise governance board, which ensures the enterprise 

governance model is correctly leveraged by each of the microservices teams. 

The scope of the enterprise governance is kept minimal and non-intrusive to allow the autonomy of each of 

the microservices teams. 

RG has standardized on an MSA Reference Architecture and a framework that each of the microservices 

teams will leverage. 



Microservices Architecture 

 

www.opengroup.org A Wh i t e  P ap e r  P u b l i s h ed  b y  Th e  O p e n  Gr o u p  29 

Rainyday Grocer
Microservices Reference Architecture

Software Defined Networking

Container

Container Container

Enterprise Applications and Storage

IaaS PublicPrivate

Microservice

API

Events Model

Rules Framework

High Performance In-Memory storage

Messaging Framework

Development Platform

API Management and Security Gateway

Users, Systems, and Applications

C
o

ntain
er O

rch
estration

M
o

n
ito

ring an
d In

stru
m

en
tatio

n

A
ud

it an
d

 Loggin
g

Secu
rity an

d
 Co

m
plian

ce

PROCESS

Choreography

 

Figure 8: Microservices Reference Architecture at RG 

Leveraging the above reference architecture, each of the teams will develop, deploy, and manage its 

respective microservices. 



Microservices Architecture 

 

www.opengroup.org A Wh i t e  P ap e r  P u b l i s h ed  b y  Th e  O p e n  Gr o u p  30 

Here are some of the microservices that are implemented at RG. Consistent with the characteristics of MSA, 

each of these microservices performs a single business activity and does it well, each is independent, 

stateless, and spawned as multiple parallel instances to ensure high resiliency. 

All of these microservices are choreographed by the application or triggered by the generated events. 

Account Login Microservice 

This microservice allows the user to log in. It validates the user’s identification and security credentials, and 

ensures the account is valid based on a set of business rules. 

The microservice API accepts an encrypted data object consisting of user credentials and account 

information. It queries the enterprise Identity and Access Management (IAM) solutions to validate the user 

credentials. It retrieves the user authentication token and account identifier. 

Using the account identifier it retrieves the account history from the cloud-based CRM solution provider. 

The rules are persisted in the in-memory storage of the microservice. It applies these rules to determine the 

account standing. If all validations pass, the service generates three tokens: 

1. User token that has a Time To Live (TTL) of the receive order transaction 

2. Transaction token that expires once the entire order delivery transaction is complete 

3. Service token that is leveraged by the MSA framework to monitor and audit the transaction. On 

completion the service also generates a login success or failure event. 

This service is leveraged by other business activity owners for their respective business processes. 

Receive Order Microservice 

This service is primarily focused on receiving and processing the order. It is triggered by the successful login 

event, and waits for the order list data object from the customer. 

Upon receiving the order list data object, it parses, categorizes, and validates all the items on the list based 

on the business rules. 

It tags this order with the user token and transaction token generated by the previous services and generates 

the following: 

1. Order success (or failure) event 

2. Service token that is leveraged by the MSA framework to monitor and audit the transaction 

3. Data object that includes the items list and other procurement/processing instructions 

4. Propagates the user token and transaction token 

Provide Estimate Microservice 

The RG business model is a no-inventory model, hence the price of goods is dependent on the current market 

price for those goods. Therefore, RG provides an estimate range. This service periodically queries RG’s 

registered grocers for the current price list. It caches this information and is able to build and provide the 

estimate of prices for the item list published by the receive order microservice. 



Microservices Architecture 

 

www.opengroup.org A Wh i t e  P ap e r  P u b l i s h ed  b y  Th e  O p e n  Gr o u p  31 

This microservice tags the estimates with the user token and transaction token generated by the previous 

services and generates the following: 

1. Estimate available event 

2. Service token that is leveraged by the MSA framework to monitor and audit the transaction 

3. Data object that includes the prices for the items list with additional metadata 

4. Propagates the user token and transaction token 

Confirm Order Microservice 

This microservice completes the order process and triggers the supply chain procure grocery sub-process. It 

sends a confirmation to the customer of order completion, with a confirmation ID and instruction on delivery 

collection of the order. 

It tags the order complete event with the user token and transaction token generated by the previous services 

and generates the following: 

1. Order complete event 

2. Service token that is leveraged by the MSA framework to monitor and audit the transaction 

3. Data object that includes the final items list with additional metadata 

4. Propagates the user token and transaction token 

Results 

RG’s choice of MSA is well suited to their needs for the following reasons: 

• It allows them to implement a complex process with a very lean team. 

• They are able to quickly build teams with readily available skill sets to build each microservice. 

• They can make changes on-the-go; i.e., CI and CD and DevOps enablement. 

• Agility and flexibility. 

• Minimal CapEx and optimal OpEx. 

Conclusion 

This is a fictional case study that is deliberately exaggerated to highlight the core and auxiliary principles of 

MSA that are developed. The intent of this case study is to develop examples to add to the understanding of 

the microservices concepts and principles. 

 



Microservices Architecture 

 

www.opengroup.org A Wh i t e  P ap e r  P u b l i s h ed  b y  Th e  O p e n  Gr o u p  32 

APPENDIX A: Service Granularity 

The various levels of service granularity and the positioning of microservices can be illustrated using the 

following diagram: 

M
o

n
o

lit
h

N
an

o

 

Assume there is an imaginary horizontal line (x-axis), representing the line of granularity; the right level 

determined for MSA. The services that fall closer, or around this line (green services within the dotted box), 

are good microservices; those that are way above this line trend towards exhibiting characteristics of 

monoliths, and those that fall way below the line trend towards exhibiting characteristics of nano-services. 

Many of the yellow services and all of the red services fall in either of these camps. 

Problems with monoliths include: 

• Even small, minor changes require rebuilding of the entire code base and re-deployment of the new build. 

• Change cycles (for various functions and features) will have to be tied together, causing an undesirable 

dependency. 

• Achieving modular structure within a monolith is hard to enforce. 

• Scaling is achieved by replicating the entire application (though specific functions may have different 

scalability requirements). 



Microservices Architecture 

 

www.opengroup.org A Wh i t e  P ap e r  P u b l i s h ed  b y  Th e  O p e n  Gr o u p  33 

Problems with nano-services include: 

• Remote calls are expensive (from a performance perspective). 

• Communication between services becomes chatty, resulting in a sub-optimal system. 

• Unmanageable explosion of services can result in service proliferation, challenging governance. 

 



Microservices Architecture 

 

www.opengroup.org A Wh i t e  P ap e r  P u b l i s h ed  b y  Th e  O p e n  Gr o u p  34 

Glossary 

API 

An Application Programming Interface (API) is a set of functions, procedures, methods, or classes used by 

computer programs to request services from the operating system, software libraries, or other service, either 

locally or via a web-based application or service. 

Architecture 

Architecture is the structure of components, their inter-relationships, and the principles and guidelines 

governing their design and evolution over time. 

CapEx/OpEx 

Capital Expenses (CapEx) and Operating Expenses (OpeEx) are two different basic categories of business 

expenses. They differ in the nature of the expenses and their respective treatments for tax purposes. 

Cloud Computing 

Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool 

of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be 

rapidly provisioned and released with minimal management effort. 

Continuous Deployment (CD) 

Continuous Deployment (CD) can be thought of as an extension of Continuous Integration, aiming at 

minimizing lead time, the time elapsed between development writing one new line of code and this new code 

being used by live users, in production. 

Continuous Integration (CI) 

Continuous Integration (CI) is a development practice that requires developers to integrate code into a shared 

repository several times a day. Each check-in is then verified by an automated build, allowing teams to detect 

problems early. 

DevOps 

DevOps (a clipped compound of “development” and “operations”) is a culture, movement, or practice that 

emphasizes the collaboration and communication of both software developers and other Information 

Technology (IT) professionals while automating the process of software delivery and infrastructure changes. 

Domain-Driven Design (DDD) 

Domain-Driven Design (DDD) provides a set of principles and methods to manage complexity by identifying 

core and ancillary domains and addressing Architecture, Development, Operations, Teams, etc. within the 

Bounded Context of each domain. 

Governance 

Architecture governance is the practice and orientation by which Enterprise Architectures and other 

architectures are managed and controlled at an enterprise-wide level. 



Microservices Architecture 

 

www.opengroup.org A Wh i t e  P ap e r  P u b l i s h ed  b y  Th e  O p e n  Gr o u p  35 

Granularity 

Decomposition of the functions performed by a software application to determining the size of work 

performed by a single task. 

Internet of Things (IoT) 

The Internet of Things (IoT) is the network of physical objects – devices, vehicles, buildings, and other items 

embedded with electronics, software, sensors, and network connectivity – that enables these objects to collect 

and exchange data. 

Microservice 

An individual microservice is a service that is implemented with a single purpose, that is self-contained, and 

independent of other instances and services. A microservice is a primary architectural building block of a 

Microservices Architecture. 

Microservices Architecture (MSA) 

Microservices Architecture (MSA) is a style of architecture that defines and creates systems through the use 

of small independent and self-contained services that align closely with business activities. 

Monolithic Application 

A monolithic application describes a single-tiered software application in which the user interface and data 

access code are combined into a single program from a single platform. A monolithic application is self-

contained, and independent from other computing applications. 

Object-Oriented Design (OOD) 

Object-Oriented Design (OOD) is the application of object-oriented methodology to the design of computer 

systems or applications. 

Resilience 

Application resilience is the ability of an application to react to problems in one of its components and still 

provide the best possible service. 

SOLID 

SOLID is an acronym coined by Rob Martin distilling the first five principles of a class in OOD. 

• SRP: The Single Responsibility Principle – a class should have one, and only one, reason to change. 

• OCP: The Open Closed Principle – you should be able to extend the behavior of a class without 

modifying it. 

• LSP: The Liskov Substitution Principle – derived classes must be substitutable for their base classes. 

• ISP: The Interface Segregation Principle – make fine-grained interfaces that are client-specific. 

• DIP: The Dependency Inversion Principle – depend on abstractions, not on concretions. 



Microservices Architecture 

 

www.opengroup.org A Wh i t e  P ap e r  P u b l i s h ed  b y  Th e  O p e n  Gr o u p  36 

Scalability 

Scalability is the capability of a system, network, or process to handle a growing amount of work, or its 

potential to be enlarged in order to accommodate that growth. 

Service-Oriented Architecture (SOA) 

A Service-Oriented Architecture (SOA) is an architectural pattern in computer software design in which 

application components provide services to other components via a communications protocol, typically over 

a network. The principles of service-orientation are independent of any vendor, product, or technology. 

Web-Oriented Architecture (WOA) 

Web-Oriented Architecture (WOA) is a software architecture style that extends SOA to web-based 

applications. 

 



Microservices Architecture 

 

www.opengroup.org A Wh i t e  P ap e r  P u b l i s h ed  b y  Th e  O p e n  Gr o u p  37 

References 

(Please note that the links below are good at the time of writing but cannot be guaranteed for the future.) 

• Martin L. Abbott, Michael T. Fisher: The Art of Scalability – Scalable Web Architecture, Processes, and 

Organizations for the Modern Enterprise; refer to: http://theartofscalability.com. 

• Blog: Adopting Microservices at Netflix – Lessons for Architectural Design; refer to: 

www.nginx.com/blog/microservices-at-netflix-architectural-best-practices. 

• Blog: James Hughes on Micro Service Architecture; refer to: http://yobriefca.se/blog/2013/04/28/micro-

service-architecture. 

• Melvin E. Conway: Conway’s Law: How Do Committees Invent?; refer to: 

www.melconway.com/research/committees.html. 

• Eric Evans: Domain-Driven Design – Tackling Complexity in the Heart of Software, Addison-Wesley, 

2003. 

• Martin Fowler article on Microservices; refer to: http://martinfowler.com/articles/microservices.html. 

• SOLID: Principles of Object-Oriented Design; refer to: 

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod. 

• Sam Newman: Building Microservices – Designing Fine-Grained Systems, O-Reilly, 2015. 

• The Open Group Service-Oriented Architecture (SOA), White Paper (W074), published by The Open 

Group, July 2007; refer to: www.opengroup.org/bookstore/catalog/w074.htm. 

• The Open Group: SOA and Boundaryless Information Flow™; refer to: 

https://opengroup.org/soa/source-book/soa/soa_bif.htm. 

• The Open Group: TOGAF® 9.1, an Open Group Standard, (G116), published by The Open Group, 

December 2011; refer to: www.opengroup.org/bookstore/catalog/g116.htm. 

 

http://theartofscalability.com/
https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices/
http://yobriefca.se/blog/2013/04/28/micro-service-architecture/
http://yobriefca.se/blog/2013/04/28/micro-service-architecture/
http://www.melconway.com/research/committees.html
http://martinfowler.com/articles/microservices.html
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://www.opengroup.org/bookstore/catalog/w074.htm
https://opengroup.org/soa/source-book/soa/soa_bif.htm
http://www.opengroup.org/bookstore/catalog/g116.htm


Microservices Architecture 

 

www.opengroup.org A Wh i t e  P ap e r  P u b l i s h ed  b y  Th e  O p e n  Gr o u p  38 

About the Authors 

Somasundram Balakrushnan, Salesforce.com (MSA Project Co-Chair) 

Somasundram Balakrushnan is a Senior Program Architect at Salesforce.com and a TOGAF 9 Certified 

Enterprise Architecture practitioner. He is an experienced Enterprise Architect and leader in SOA-based 

architecture development. He has led multiple teams in developing proof-of-concept architectures using 

microservices. His association with The Open Group includes: the SOA Work Group, Microservices 

Architecture (MSA), evolution of the TOGAF® standard, and Open Platform 3.0™. Som is leading the MSA 

Project in the capacity of Co-Chair. 

John Bell, Ajontech LLC 

John T. Bell is the Founder and Principal Consultant of Ajontech LLC. He has over 35 years’ experience in 

the Information Technology industry and 14 years supporting IT within hospitality-related companies. He 

chairs multiple working groups for the IEEE and the Hotel Technology Next Generation Consortium. John is 

also co-chair of The Open Group SOA Reference Architecture work. 

Benjamin Currier, Hewlett Packard Enterprise 

Benjamin Currier is a Solutions Architect for Hewlett Packard Enterprise. He works primarily with customers 

in the Airline and Financial industries specializing in Event-Driven Architecture (EDA), Service-Oriented 

Architecture (SOA), and Business Process Management (BPM). He also works with a variety of customers 

interested in accelerating IT delivery through agile methodologies, DevOps practices, and cloud computing. 

Ed Harrington, Conexiam 

Ed Harrington is an Enterprise Architect at Conexiam and has chaired multiple Open Group Forums and 

projects. He is a major author of the SOA Ontology, a Standard of The Open Group, and has been involved in 

The Open Group SOA Work Group since its inception. He has long been a proponent of the concept of 

Enterprise Architecture sustainability. 

Brian Helstrom, IBM 

Brian Helstrom is a Senior Enterprise Architect at IBM. He has a long history of developing Enterprise 

Architectures for multiple clients. Brian spent more than seven years leading development and 

implementations of SOA and has developed MSA proof-of-concept architectures. 

Peter Maloney, Raytheon Company 

Peter Maloney is a Senior Engineering Fellow at Raytheon Company. He became interested in Enterprise 

Architectures and particularly SOA as a result of the ever-expanding need for providing access to 

increasingly complex data products to a diverse group of end users, with the resulting needs for collaboration, 

throughput management, and security. He is a Raytheon Certified Architect, a program accredited by The 

Open Group, and a three-time winner of the Raytheon Excellence in Technology Award. He holds one patent 

and has authored more than a dozen papers. 



Microservices Architecture 

 

www.opengroup.org A Wh i t e  P ap e r  P u b l i s h ed  b y  Th e  O p e n  Gr o u p  39 

Ovace Mamnoon, Hewlett Packard Enterprise (MSA Project Co-Chair) 

Ovace A. Mamnoon is an Engineer, an Enterprise Architect, and a Practice Principal at Hewlett Packard 

Enterprise. His near 20 years of varied work experience encompass areas that have a strong bearing on 

Microservices Architecture (MSA) including developing embedded systems, SmartGrid design and 

implementation, Service Oriented Architecture (SOA) and Integration, Internet of Things (IoT), Cloud 

Computing, Digital Enterprise, and others, all with a strong focus on Enterprise Architecture. Ovace is an 

active participant in The Open Group and is a Co-Chair of The Open Group MSA Project. 

Marcelo Martins, IBM 

Marcelo Martins is an IBM Senior Certified and Open Group Distinguished Certified IT Architect, member 

of the IBM IT Architecture certification board, and member of the Canadian Academy of Technology 

Affiliate. In his 25 years of experience in IT, he has focused in enterprise, integration, and application 

architectures. He has worked with major customers in Canada and worldwide in the design and delivery of 

complex systems. Currently, Marcelo is a Client Technical Leader working with customers in the financial 

sector in Canada, helping them define technical strategies and adoption of emerging technologies. Marcelo 

has recently authored an IBM Redbook on microservices (Microservices from Theory to Practice) and 

continues to collaborate with the technical community within and outside IBM on furthering microservices 

understanding and adoption. 

 



Microservices Architecture 

 

www.opengroup.org A Wh i t e  P ap e r  P u b l i s h ed  b y  Th e  O p e n  Gr o u p  40 

Acknowledgements 

The Open Group gratefully acknowledges the contribution of the authors, the reviewers: 

• Ali Arsanjani, IBM 

• Elizabeth Penisten, Raytheon Company 

• Carlos Arturo Quiroga, IBM 

• Sriram Sabesan, Conexiam 

and the other members of the MSA Project team: 

• Ahmed Abdel-Fattah, IBM 

• Gautam Bhat, IBM 

• Mike Broomhead, IBM 

• Chris Harding, The Open Group (SOA Forum Director) 

• Herman Hartman, Capgemini SA 

• Ram Kodi, EA Principals Inc. 

• Heather Kreger, IBM 

• Satyajit Malavde, Hewlett-Packard Enterprise 

• Lionel Mommeja, IBM 

• Mrudul Palvankar, Cognizant Technology Solutions US Corporation 

• Carlos Arturo Quiroga, IBM 

• Vaidyanathan Ramaswamy, Hewlett Packard Enterprise 

• Sarang Shah, Infosys Limited 

• Mukund Srinivasan, Capgemini SA 

• Ron Tolido, Capgemini SA 

• Zhiguo (Antonin) Yang, Hewlett Packard Enterprise 

• Shar Zand-Biglari, American Express 



Microservices Architecture 

 

www.opengroup.org A Wh i t e  P ap e r  P u b l i s h ed  b y  Th e  O p e n  Gr o u p  41 

About The Open Group 

The Open Group is a global consortium that enables the achievement of business objectives through IT 

standards. With more than 500 member organizations, The Open Group has a diverse membership that spans 

all sectors of the IT community – customers, systems and solutions suppliers, tool vendors, integrators, and 

consultants, as well as academics and researchers – to: 

• Capture, understand, and address current and emerging requirements, establish policies, and share best 

practices 

• Facilitate interoperability, develop consensus, and evolve and integrate specifications and open source 

technologies 

• Offer a comprehensive set of services to enhance the operational efficiency of consortia 

• Operate the industry’s premier certification service 

Further information on The Open Group is available at www.opengroup.org. 

http://www.opengroup.org/

	Copyright © 2016, The Open Group
	The Open Group hereby authorizes you to use this document for any purpose, PROVIDED THAT any copy of this document, or any part thereof, which you make shall retain all copyright and other proprietary notices contained herein.
	This document may contain other proprietary notices and copyright information.
	Nothing contained herein shall be construed as conferring by implication, estoppel, or otherwise any license or right under any patent or trademark of The Open Group or any third party. Except as expressly provided above, nothing contained herein shal...
	Note that any product, process, or technology in this document may be the subject of other intellectual property rights reserved by The Open Group, and may not be licensed hereunder.
	This document is provided "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. Some jurisdictions do not all...
	Any publication of The Open Group may include technical inaccuracies or typographical errors. Changes may be periodically made to these publications; these changes will be incorporated in new editions of these publications. The Open Group may make imp...
	Should any viewer of this document respond with information including feedback data, such as questions, comments, suggestions, or the like regarding the content of this document, such information shall be deemed to be non-confidential and The Open Gro...
	If you did not obtain this copy through The Open Group, it may not be the latest version. For your convenience, the latest version of this publication may be downloaded at www.opengroup.org/bookstore.
	ArchiMate®, DirecNet®, Making Standards Work®, OpenPegasus®, The Open Group®, TOGAF®, UNIX®, UNIXWARE®, X/Open®, and the Open Brand X® logo are registered trademarks and Boundaryless Information Flow™, Build with Integrity Buy with Confidence™, Depend...
	Java® is a registered trademark of Oracle and/or its affiliates.
	Microservices Architecture
	Document No.: W169
	Published by The Open Group, July 2016.
	Any comments relating to the material contained in this document may be submitted to:
	The Open Group, 44 Montgomery St. #960, San Francisco, CA 94104, USA
	or by email to:
	ogpubs@opengroup.org
	Microservices Architecture Style
	The Problem Space
	Combination of Distinctive Features
	Components, their Interaction and Governance
	Granularity
	Built on Established Heritage
	Key Defining Characteristics of an MSA
	Other Related Characteristics of MSA
	Key Governing Principles of Microservices Architecture
	Question 1: Vision and Intent Comparison
	Question 2: Entry Criteria/Applicability for Using One Style
	Question 3: Business Drivers
	Question 4: Characteristics Comparison
	Question 5: Architecture Paradigm and Style Comparison
	Question 6: Architectural Principles
	Introduction
	Business Scenario
	MSA-Based Solution
	Result
	Conclusion
	Introduction
	Business Scenario
	MSA-Based Solution
	Results
	Conclusion
	Somasundram Balakrushnan, Salesforce.com (MSA Project Co-Chair)
	John Bell, Ajontech LLC
	Benjamin Currier, Hewlett Packard Enterprise
	Ed Harrington, Conexiam
	Brian Helstrom, IBM
	Peter Maloney, Raytheon Company
	Ovace Mamnoon, Hewlett Packard Enterprise (MSA Project Co-Chair)
	Marcelo Martins, IBM

